Gridless Ion & Plasma Sources

KRI Gridless Products
- eH200
- eH400
- eH1000
- eH2000
- eH3000
- eH Linear

Ion Beam Assisted Deposition
In-situ Substrate Precleaning
Direct Deposition Coating
Surface Modifications

Mean free path, $T_{\text{target}} = T_{\text{incident}}$

\[\lambda = \frac{1}{\sqrt{n_0}} \]

Mean free path, $T_{\text{target}} = 0$

\[\lambda = \frac{1}{n_0} \]

Distribution of path lengths

\[I = I_0 \exp(-x/\lambda) \]

Debye length

\[\lambda_D = \frac{\sqrt{\pi} k_B T}{n_0 e^2} \]

Boltzmann equation

\[n_e = n_{eo} \exp \left(\frac{eV}{k_B T} \right) \]

Child's law

\[j = \left(\frac{4eV}{9}\right) \sqrt{2e/m} \left(V^{3/2} \lambda^2 \right) \]

Bohm conductivity \(\perp B \)

\[\sigma_B \approx \frac{e n_e}{16} \]

Temperature–energy equivalence

\[1 \text{ ev} = 11,600 \text{ K} \]

Mean Maxwellian speed

\[\bar{v} = \sqrt{\frac{8k_B T}{\pi m}} \]
Kaufman & Robinson offers gridless end-Hall “eH” Ion / Plasma Products. Our products include broad-beam End-Hall Ion Sources and automated power supplies controllers. All designs are straightforward which easily retrofit into existing vacuum systems, or easily integrate into new OEM systems.

Since 1978, Kaufman & Robinson (KRI), Inc. has designed and built broad-beam ion sources for the vacuum processing community including both manufacturers and researchers. The designs of the eH ion/plasma beam products were developed with our world-recognized expertise in plasma physics, ion source design, and power control engineering.

Currently, KRI holds more than 20 active patents in ion beam and plasma technology, including its innovative designs in the gridless end-Hall technology.

Meeting Your Application Needs

KRI's knowledge in material applications is captured in our product relevance. Our products are proven process tools which are connected to real results. For example:

The eH products output a high current and low energy beam ideally suited for surface treatment and thin film growth applications which include:

- Ion Beam Assisted Deposition (IBAD)
- In-situ Substrate Precleaning
- Direct Deposition Coatings
- Low Energy Ion Beam Etching
- Surface Modification
- Biased Target Ion Beam Deposition

End-Hall (eH) Ion / Plasma Beam Sources

- Low Cost
- Rugged
- Remote Plasma
- Directed Beam

Design Features

- Gridless
- Inert & Reactive Gases
- Optimized Configurations
- Modular Anode
- Low Energy Ions
- High Currents
- Large Process Zone

Applications

- Adhesion
- Film Densification
- Chemical Conversion
- Smoothing
- LTCVD

The compact low profile eH series of broad beam ion sources are available in different sizes which covers both R&D and high yield production requirements. Large ion beam currents meet critical arrival ratios for high deposition rate processes. Low energy ions minimize ion bombardment damage to surfaces and interfaces. The broad divergent beam improves throughput by uniformly covering a wide deposition zone.

All eH models feature the patented modular anode. The simple plug / unplug task makes it easy to maintain, assemble and disassemble, resulting in significant productivity benefits.

- Removable anode module for bench-top maintenance
- Self aligning anode module for simple reinstallation
- Double contoured anode for optimized plasma discharge
- Thermally decoupled magnet system
- Enhanced gas distribution for efficient gas management
- Shielded insulators for lower maintenance

The Ion Beam Authority

- Credibility
- Innovative
- Quality
Cathode / Neutralizer Options

The eH source can be configured with different cathode and anode module components. The available cathode / neutralizer options include simple filaments or filamentless hollow cathodes. The anode module options include optimized configurations for a low energy / high output, extra current output for O₂ gas, or improved stability in dielectric environments.

Electron Sources

All electron sources tightly control the electron emission current whether it is inexpensive filament designs or hollow cathode models used for extended run time and low temperature requirements.

- **LFN2000** for up to 2 A emission current
- **SHC1000** for up to 5 A emission current
- **MHC1000** for up to 10 A emission current
- **LHC1000** for up to 20 A emission current
- **DHC1000** disposable hollow cathodes
- **eH Sidewinder** for up to 10 A emission current

Product Options

The eH models can be equipped with optional hardware to tailor the product to the customer’s process and installation.

- **Vacuum feedthroughs**
- **Grooved anode**
- **Water cooled anode**
- **Water cooled front plate**
- **Angular mounting bracket**
- **Ti, Ta, graphite or stainless steel gas reflectors**
- **Magnetic field options**

eHL-X Linear Configurations

The linear eHL-X ion / plasma beam sources are suited for installation with linear movement substrates, such as in-line, web coating and rotary sputtering systems. Typical, applications are in-situ cleaning and ion assisted deposition where low energy & high currents are beneficial.

The modular linear configuration has unique optimization capabilities. It uses standard cylindrical end-Hall modules placed in a linear array. The spacing and number of the modules provides a strong benefit to the application. The modules can be spaced to optimize current density dose, uniformity and overall length. Since this configuration uses one electron source and a common power supply, the cost for the integrated modular linear package is minimized.
Power Supplies

All KRI power supplies feature advanced primary switched power modules with output control to protect power supply and load. Upgrades from basic configurations to advanced configuration are easily achieved by replacing or adding modules. Depending upon the model, the power supplies deliver either AC or DC signals with output powers ranging from 300 to 4000W.

- Modular architecture with quick change power modules
- Reliable power modules, designed for industrial use
- Short and arc management through protection circuits
- Constant and stable ion beam parameter control over complete operating range
- Selection of operational modes to fit application

Nominal Specifications

<table>
<thead>
<tr>
<th>KRI</th>
<th>eH200</th>
<th>eH400</th>
<th>eH1000</th>
<th>eH1000xO₂</th>
<th>eH2000</th>
<th>eH3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cathode/Neutralizer</td>
<td>F or HC</td>
<td>HC</td>
</tr>
<tr>
<td>Discharge Voltage ((V_d))</td>
<td>30-300V 50-300V</td>
<td>30-150V 50-300V</td>
<td>100-300V 50-300V</td>
<td>50-300V 30-150V 50-250V</td>
<td>50-250V 50-300V 50-250V</td>
<td></td>
</tr>
<tr>
<td>Discharge Current ((I_{d\text{ max}}))</td>
<td>2A 5A 10A</td>
<td>10A 12A 5A</td>
<td>10A 15A</td>
<td>10A 15A 20A</td>
<td>10A 15A</td>
<td></td>
</tr>
<tr>
<td>Divergence (hwhm)</td>
<td>>45</td>
<td>>45</td>
<td>>45</td>
<td>>45</td>
<td>>45</td>
<td></td>
</tr>
<tr>
<td>Gases</td>
<td>Ar, O₂, N₂, H₂, organic precursors, others</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical flows</td>
<td>1-15sccm 2-25sccm</td>
<td>2-50sccm 2-50sccm</td>
<td>2-75sccm</td>
<td>2-75sccm 2-75sccm</td>
<td>5-100sccm</td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>2.0” 3.0”</td>
<td>4.0” 4.0”</td>
<td>4.0” 4.0”</td>
<td>4.0” 6.0”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter</td>
<td>2.5” 3.7”</td>
<td>5.7” 5.7”</td>
<td>5.7” 9.7”</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water cooled</td>
<td>no optional optional optional yes optional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F = Filament; HC = Hollow Cathode; xO₂ = Optimized for O₂ current